$2 \theta_{\text {min }}=10.00,2 \theta_{\text {max }}=$ 119.98°
Increment in $2 \theta=0.03^{\circ}$
Profile function: pseudoVoigt function

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	2	$U_{\text {cq }}$
Gd 1	0.19320 (14)	0.10615 (14)	0.44679 (9)	0.0008 (4)
Gd2	0	0.3958 (2)	0.4029 (9)	0.0008
Ga	()	0.1947 (4)	0	0.0003 (13)
Ol	0.155 (2)	0.2512 (14)	0.183 (3)	0.004 (3)
O2	0.338 (2)	0.013 (2)	0.219 (5)	0.004
O3	0	0.049 (2)	0.167 (5)	0.004
O4	0	0.202 (2)	0.661 (4)	0.004

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

Gd1-O2	2.08 (2)	Gd2-O1	2.46 (2)
Gdi-O1	2.21 (2)	Gd2-O1"	2.46 (2)
Gdi-O4	2.36 (2)	$\mathrm{Gd} 2-\mathrm{O} 2^{11}$	2.49 (2)
$\mathrm{Gd} 1-\mathrm{O} 2{ }^{\text {i }}$	2.39 (2)	$\mathrm{Gd} 2-\mathrm{O}^{\text {vii }}$	2.49 (2)
Gd1-O3	2.41 (2)	Gd2-O4	2.60 (2)
Gdl-O1"	2.48 (2)	$\mathrm{Ga}-\mathrm{Ol}$	1.83 (2)
Gd 1 - $\mathrm{O3}^{\text {in }}$	2.74 (2)	$\mathrm{Ga}-\mathrm{Ol}^{\prime \prime}$	1.83 (2)
$\mathrm{Gd} 2-\mathrm{O} 2^{\text {² }}$	2.21 (2)	$\mathrm{Ga}-\mathrm{O} 4^{\text {viII }}$	1.86 (2)
Gd2-O2'	2.21 (2)	$\mathrm{Ga}-\mathrm{O} 3$	1.89 (2)
$\mathrm{Ol}-\mathrm{Ga}-\mathrm{O}^{\text {'1" }}$	122.1 (7)	$\mathrm{O} 4{ }^{\text {viii }}-\mathrm{Ga}-\mathrm{O} 3$	121.8(12)
$\mathrm{Ol}-\mathrm{Ga}-\mathrm{O} 3$	92.2 (8)	$\mathrm{O4}{ }^{\text {¹ii }}-\mathrm{Ga}-\mathrm{Ol}^{1 \mathrm{i}}$	122.1 (7)
$\mathrm{Ol}-\mathrm{Ga}-\mathrm{Ol}^{\text {vi }}$	99.0 (12)	$\mathrm{O} 3-\mathrm{Ga}-\mathrm{Ol}^{\text {i }}$	92.2 (8)

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $-x,-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, z$; (v) $x-\frac{1}{2}, \frac{1}{2}+y, z$; (vi) $-x, y, z$; (vii) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; (viii) $x, y, z-1$.

The possible space groups were $\mathrm{Cmc} 2_{1}, \mathrm{C} 2 \mathrm{~cm}$ and Cmcm from the systematic extinction conditions. The structure could be solved only in Cmc_{1} by direct methods. During the Rietveld refinement, a preferred orientation correction was carried out using the March-Dollase function (Dollase, 1986). The adjustable parameter of the function was refined to be 0.956 (2) for a (100) preferred orientation of plate crystals. The isotropic displacement parameters were constrained to be the same for the Gd atoms and for the O atoms. The atomic parameters were standardized using the program STRUCTURE TIDY (Gelato \& Parthé, 1987).
Data collection: RISM (Rigaku Corporation, 1995). Program(s) used to solve structure: EXPO (Altomare et al., 1998). Program(s) used to refine structure: RIETAN97 (Izumi, 1997). Molecular graphics: ATOMS (Dowty, 1998)

This work was supported in part by a Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports and Culture, Japan, and by the Nippon Sheet Glass Foundation for Materials Science and Engineering.

[^0]with Sr^{2+} cations inserted in channels composed of fivemembered rings running along [100].

Comment

The investigation of the $\mathrm{SrF}_{2}-\frac{1}{2} \mathrm{Fe}_{2} \mathrm{O}_{3}$-(HF and/or $\left.\mathrm{H}_{3} \mathrm{PO}_{4}\right)-\mathrm{H}_{2} \mathrm{O}$ system using high-temperature hydrothermal growth was carried out with a double aim: (i) the synthesis of new fluorophosphated compounds and (ii) the understanding of the role of solvent through the $\mathrm{P}: \mathrm{F}$ ratio within resulting fluorophosphates. The use of a $7 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solvent led to the compound $\mathrm{SrFeP}_{2} \mathrm{O}_{7}$, which is a new homologue in the $A M \mathrm{P}_{2} \mathrm{O}_{7}$ series. This compound results from the reduction of $\mathrm{Fe}^{\text {III }}$ to $\mathrm{Fe}^{\mathrm{II}}$ and has been confirmed by a bond-valence analysis (Brown, 1981). The hydrothermal medium became the reductor. Such an observation has already been made (Kuznetsov, 1968) and can be explained by traces of water outside the platinum tube, between the tube and the steel lining of the autoclave. Metallic iron from steel is oxidized with hydrogen production. The gas migrates through the platinum and reacts with the elements inside the tube. The water can be brought in by moist nitrogen, which applies the external counter-pressure. $\mathrm{SrFeP}_{2} \mathrm{O}_{7}$ is isostructural with $\mathrm{BaCuP}_{2} \mathrm{O}_{7}$ (Riou \& Goreaud, 1990) and $\mathrm{SrCoP}_{2} \mathrm{O}_{7}$ (Riou \& Raveau, 1991), and derives from $\alpha-\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (Calvo, 1968). The structure is built up from two kinds of fundamental units: (i) $\left[\mathrm{FeO}_{5}\right]$ square pyramids and (ii) $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]$ bitetrahedra which share corners to give rise to a three-dimensional framework. The Sr^{2+} cations are inserted inside channels composed of

Fig. 1. Perspective view of $\mathrm{SrFeP}_{2} \mathrm{O}_{7}$ along [100] showing the Sr^{2+} cations inserted in channels composed of five-membered rings.
five-membered rings running along [100] (as shown in Fig. 1) and adopt an eightfold coordination polyhedron, with distances ranging from 2.53 to $2.78 \AA$. Fe atoms are located in the vicinity of the centre of the square pyramid, with mean $\mathrm{Fe}-\mathrm{O}$ distances very close to the sum of the ionic radii (Shannon, 1976).

The $\left[\mathrm{P}_{2} \mathrm{O}_{7}\right]$ bitetrahedra are characterized by a longer bridging $\mathrm{P}-\mathrm{O}$ distance: 1.604 (2) \AA versus an average of 1.523 (2) \AA for the other bonds. At the final stage of refinement, the maximum residual electron density of $1.99 \mathrm{e}^{-3}$ was found $0.7 \AA$ from the Sr atom. The displacement ellipsoids in the asymmetric unit are shown in Fig. 2.

Fig. 2. Displacement ellipsoid plot (50% probability) of the title compound.

Experimental

Single crystals of $\mathrm{SrFeP}_{2} \mathrm{O}_{7}$ were obtained by hydrothermal growth starting from the reactants SrF_{2} and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the molar ratio $2: 1$ in an aqueous solution of phosphoric acid $(7 \mathrm{M})$. The mixture was sealed in a platinum tube (filling level 40%) and heated at 956 K for 24 h . The maximum pressure reached was 186 MPa . The resulting product was filtered off, washed with distilled water and dried in air at room temperature. The main by-product was unreacted SrF_{2}.

Crystal data

$\mathrm{SrFeP}_{2} \mathrm{O}_{7}$
$M_{r}=317.41$
Monoclinic
$P 2{ }_{1} / n$
$a=5.370(2) \AA$
$b=8.268$ (4) \AA
$c=12.693(3) \AA$
$\beta=90.37(2)^{\circ}$
$V=563.5(4) \AA^{3}$
$Z=4$
$D_{x}=3.741 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Siemens AED-2
diffractometer

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 34
reflections
$\theta=14-16^{\circ}$
$\mu=12.59 \mathrm{~mm}^{-1}$
$T=291$ (2) K

Platelet

$0.114 \times 0.104 \times 0.095 \mathrm{~mm}$ Translucent light pink

$$
\begin{aligned}
& R_{\mathrm{int}}=0.035 \\
& \theta_{\max }=34.97^{\circ}
\end{aligned}
$$

Profile data from ω / θ scans
Absorption correction: none 4171 measured reflections 2471 independent reflections 1922 reflections with
$I>2 \sigma(I)$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 13$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 60 min intensity decay: 4.4%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.090$
$S=1.018$
2471 reflections
101 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0574 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.988 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.928$ e \AA^{-3}
Extinction correction: SHELXL93
Extinction coefficient: 0.0288 (16)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Srl}-\mathrm{O}^{1}$	2.533 (2)	$\mathrm{Fe} 1-\mathrm{O} 4$	2.113 (2)
$\mathrm{Sr} 1-\mathrm{O} 3$	2.559 (2)	$\mathrm{Fe} 1-07$	2.199 (2)
$\mathrm{Sr} 1-\mathrm{O} 7$	2.566 (2)	$\mathrm{Pl}-\mathrm{O3}^{\prime \prime}$	1.513 (2)
$\mathrm{Srl}-\mathrm{O} 2^{\text {ii }}$	2.637 (2)	$\mathrm{Pl}-\mathrm{Ol}^{\text {i }}$	1.515 (2)
Srl - $\mathrm{O}^{\text {iii }}$	2.648 (2)	$\mathrm{Pl}-\mathrm{O} 7$	1.529 (2)
$\mathrm{Sr} 1-\mathrm{O} 1^{\text {iV }}$	2.657 (3)	$\mathrm{Pl}-\mathrm{OS}^{\text {¹1 }}$	1.605 (2)
Sri-O4	2.722 (2)	P2-04	1.523 (2)
$\mathrm{Srl}-\mathrm{O}^{1}$	2.776 (2)	P2-O6	1.524 (2)
$\mathrm{Fe} 1-\mathrm{Ol}$	1.988 (2)	$\mathrm{P} 2-\mathrm{O} 2^{\text {'11 }}$	1.536 (2)
$\mathrm{Fe} 1-\mathrm{O} 2{ }^{\text {* }}$	2.049 (2)	P2-O5	1.604 (2)
$\mathrm{Fel}-\mathrm{Ob}^{\text {v1 }}$	2.113 (2)		
$\mathrm{O}^{\text {"11 }}-\mathrm{Pl}-\mathrm{O} 1^{\text {ci" }}$	113.78 (13)	$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 2^{1 \times 1}$	111.98 (12)
$\mathrm{O3}^{\text {"1 }}$-PI-07	112.94 (13)	$\mathrm{O} 6-\mathrm{P} 2-\mathrm{O} 2^{\text {¹11 }}$	111.02 (12)
$\mathrm{Ol}^{\text {vii }}-\mathrm{Pl}-\mathrm{O}^{\text {a }}$	108.35 (13)	O4-P2-O5	103.91 (12)
$\mathrm{O} 3^{\text {vi] }}-\mathrm{Pl}-\mathrm{OS}^{\text {"11 }}$	107.80 (13)	O6-P2-O5	108.02 (12)
$\mathrm{Ol}{ }^{\text {vii }}-\mathrm{Pl}-\mathrm{O}^{\text {¹1 }}$	105.71 (12)	$\mathrm{O} 2^{\text {¹i }}-\mathrm{P} 2-\mathrm{O} 5$	106.41 (12)
O7-P1-05 ${ }^{\text {iin }}$	107.86 (12)	$\mathrm{P} 2-\mathrm{O}-\mathrm{P} 1^{1 \times}$	127.39 (14)
O4-P2-O6	114.82(12)		
$\begin{aligned} & \text { Symmetry codes: (i) } \frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ; \text { (ii) } \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (iii) } \\ & \frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z ; \text { (iv) } x-1, y, z ;(\text { v) } x, 1+y, z ;(\text { vi) } 1+x, y, z ; \text { (vii) } \\ & \frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (viii) } 1-x, 1-y,-z ; \text { (ix) } x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2} . \end{aligned}$			

Absorption corrections were attempted (Gaussian method), but they did not improve the results of the refinement. The rather complex shape of the crystal makes a good numerical correction difficult to obtain. Thus, the results are based on observed structure factors with no absorption correction. Only about half the reflections in the $h k l$ range indicated could be measured, but all independent reflections were measured at least once.

Data collection: DIF4 (Stoe \& Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: DIAMOND (Bergerhoff, 1996).

The authors thank Professor M. Leblanc (Université du Maine) for his help in data collection.

[^1]
References

Bergerhoff, G. (1996). DIAMOND. A Visual Crystal Structure Information System. University of Bonn, Germany.

Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, edited by M. O`Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
Kuznetsov, V. A. (1968). J. Crost. Growth, 3-4, 405-412.
Riou, D. \& Goreaud, M. (1990). Acta Cryst. C46, 1191-1193.
Riou, D. \& Raveau, B. (1991). Acta Cryst. C47, 1708-1709.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoc \& Cic, Darmstadt, Germany

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 483-485

$\mathbf{T a}_{5} \mathbf{S b}_{4}$

Sung Kwon Kang \dagger and Gordon J. Miller
Department of Chemistry, Iowa State University, Ames, IA 50011,USA. E-mail: gmiller@iastate.edu

(Received I3 July 1998; accepted 25 November I998)

Abstract

The title compound, pentatantalum tetraantimonide, was obtained as a by-product of the reaction between Ba and Sb mixed in a 1:2 molar ratio using tantalum as a reaction container. This compound adopts the $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ structure type, which consists of chains of vertexsharing $\mathrm{Ta}_{6} \mathrm{Sb}_{8}$ face-capped octahedral clusters. The resulting formulation is $\mathrm{Ta}_{4} \mathrm{Ta}_{2 / 2} \mathrm{Sb}_{8 / 2}$. Distance ranges are: Ta-Ta 2.930 (1)-3.301 (1) and $\mathrm{Ta}-\mathrm{Sb} 2.775$ (2)3.074 (1) \AA; there are no bonding $\mathrm{Sb} \cdots \mathrm{Sb}$ distances. Closer inspection reveals that the Ta substructure also resembles chains cut out from bcc packing.

Comment

During investigations on the binary barium-antimony system using sealed tantalum containers for their preparation, the compound $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ was obtained as a side product. Previously, this compound was prepared by direct reaction between the elements and characterized by X-ray powder diffraction (Boller \& Nowotny, 1964; Furuseth et al., 1965). $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ is isostructural with tetragonal $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ (Grønvold et al., 1961), which adopts the space group $14 / m$. Unit-cell parameters for $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ have been determined to be $a=10.2357$ (14) and $c=3.5425$ (7) \AA. The shortest interatomic distances

[^2]
[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1230). Services for accessing these
 data are described at the back of the journal.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1225). Services for accessing these data are described at the back of the journal.

[^2]: \dagger Permanent address: Department of Chemistry, Chungnam National University, Taejon 305-764, Korea.

